Alkenyl Sulfonamide Diarylation – Now In Press

If you need something to “chew” on this Thanksgiving, look no further than our most recent collaborative paper severed by Team Nickel and Bristol Myers Squibb, accepted today for publication in ACS Catalysis. Led by second-year graduate student Omar Apolinar, the manuscript outlines the discovery and development of sulfonamides as uniquely effective nitrogen-based directing groups for the 1,2-diarylation of diverse alkenyl amine derivatives, including those with highly substituted alkenes and those where the alkene is remote from the sulfonamide. By taking advantage of the 4-cyanobenzenesulfonyl group, a close cousin of the venerable nosyl group, the sulfonamide can functional as a dual directing group and masked amine nucleophile, allowing for rapid modular synthesis of highly substituted amine products. Congrats to Omar, Van, Nana, and Joe from our lab and collaborator Mike Schmidt from BMS!

Click here for a link to the paper: https://pubs.acs.org/doi/10.1021/acscatal.0c03857

The work first appeared in pre-print form back in July: https://chemrxiv.org/articles/preprint/Sulfonamide_Directivity_Enables_Ni-Catalyzed_1_2-Diarylation_of_Diverse_Alkenyl_Amines/12642803/1

E/Z Isomerization Mechanistic Study Pre-Print Online

It has long been known that alkenes undergo isomerization—both positionally and stereochemically (E/Z)—in the presence of a palladium(II) catalyst, but the mechanistic details of this process have remained murky. In collaboration with the Blackmond lab at Scripps Research, we interrogated the mechanism of E/Z isomerization of alkenyl amides bearing an 8-aminoquinoline (AQ) directing group, which facilitates detection and characterization of otherwise short lived intermediates and suppresses positional isomerization. By leveraging a battery of techniques including in situ monitoring of intermediates, reaction kinetics, deuterium labeling, and DFT calculations, we were able to rule out several mechanistic hypotheses, with the pointing to a monometallic nucleopalladation mechanism. Congrats to Rei, Malkanthi, Mingyu, and high school intern Nhi on this work!

For a link, click here: https://chemrxiv.org/articles/preprint/Mechanistic_Studies_of_Pd_II_-Catalyzed_E_Z_Isomerization_of_Unactivated_Alkenes_Evidence_for_a_Monometallic_Nucleopalladation_Pathway/13194932

Former Postdoc De-Wei Gao Begins his Independent Academic Career

Congrats to former postdoc Dr. De-Wei Gao on his appointment as an Assistant Professor in the School of Physical Science and Technology at ShanghaiTech. De-Wei completed his Ph.D. at the Shanghai Institute of Organic Chemistry (SIOC) under the mentorship of Prof. Shu-Li You. He was a Postdoc in the Engle lab from 2016–2018, where he spearheaded our lab’s efforts in various aspects of copper catalysis. Since 2018, that time has been a Postdoc in the lab of Prof. Yi Tang at UCLA. Research in the Gao lab at ShanghaiTech will focus on selective synthesis of amino acids, peptides and proteins, the design of novel catalysts, and the development of biocompatible reactions.

To read more about the Gao group, click here: https://spst.shanghaitech.edu.cn/spst_en/2020/1010/c2939a56210/page.htm