Organometallic Chemistry 2021 Final Exam: June 24, 2021 at 8:00 AM PST

Directions: Please provide all answers, legibly, directly on this document and/or with appended pages as appropriate. Label all pages with your name in the top right corner and submit them as a single PDF in portrait orientation by emailing as an attachment to the instructor and TA's (each answer must be clearly paired with the respective problem by labeling and sequential organization). Do not put multiple conflicting answers for the same question, points will be taken off. The periodic table is attached on the last page.

1. Provide the electron counting for the following structure. (4 points, 2 points each)

oxidation state	
d electron count	
electron count	
Coordination number	

(b)	Me
	Me-Si-PCy ₂
	(JH
	N-Re-H
	(´H`
	Me ^{-Si} —PCy ₂
	Mé

oxidation state	
d electron count	
electron count	
Coordination number	

- 2. Draw the most accurate structure from the formula. (8 points, 2 points each)
- (c) Co₂(CO)₈

(d) $Mn_2(CO)_{10}$

(e) $Cp_2W(CO)_2$

(f) [Pd(triphos)₂]⁺²

3. Consider the reaction of ethylene to form butadiene. (11 points)

(a) Draw a detailed catalytic cycle for the formation of butadiene and specify the byproduct of this reaction. (8 points)

(b) Based on your mechanism, draw multiple potential byproducts. (3 points)

4. (a)	The Wacker Process is a widely used homogeneous catalyzed reaction in industry. (15 points) Provide the reactants and catalysts used for this industrial process and draw a detailed mechanism. (10 points)
(b)	Using deuterium labeled reactants, (any D/H-permutation is available), propose a set of experiments that would help elucidate both nucleometallation and β -H elimination steps of the mechanism. (5 points)

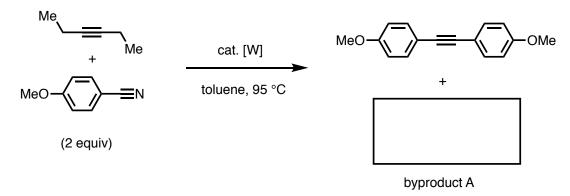
5. Consider the desaturation of this cyclic ketone. (8 points)
(a) Propose a catalytic cycle for the following transformation . (6 points)

(b) Based on the reagents in the reactions, predict a potential side product. (2 points)

- 6. In a stoichiometric experiment, treatment of [W] with excess 3-hexyne leads to formation of a new tungsten species [W'] as the major product. (15 points)
 - (a)Draw the structure of this new product [W'] and any organic byproducts. (4 points)

$$[W] = X \longrightarrow W$$

$$(excess) Me$$


$$toluene$$

$$[W']$$

(b) Provide the electron counting for [W] and [W'] where X is a generic X-type ligand. (2 points) [W]

oxidation state	oxidation state
d electron count	d electron count
electron count	electron count
Coordination number	Coordination number

(c) Now consider the following catalytic reaction. Draw the structure of byproduct A that balances the above equation. (3 points)

(d)	Draw a catalytic cycle for this transformation. (6 points)
(e)	(Bonus: +3 points) Based on your knowledge of catalysts used for related processes covered in class, propose specific ligands for X.

7. Draw the expected cross-metathesis products with relative stereochemistry. (2 points, 4 points for last q, 12 points) Bonus: draw the full catalyst structure for HGII and GII +2 each

8. In 2019, it was reported that the *p*-block compound Sb(TFA)₅ (TFA = trifluoroacetate) is able to mediate functionalization of methane and ethane. (8 points)

Sb
$$^{V}(TFA)_{5}$$
 + Me-Me
$$(500 \text{ psi})$$

$$F_{3}C$$

$$(60\% \text{ yield based on Sb})$$

(a) One of the TFA ligands is κ^2 . Based on this information draw the structure and name the geometry. (2 points)

(b) Propose a mechanism for formation of product A. (6 points)

(c) (Bonus: +6 points) Control experiments revealed that product B is formed from product A. Draw two or more mechanisms by which this could take place and design one or more experiments to distinguish between them.

9. Draw the mechanism for the formation of the iridium complex below. (8 points)

$$[Ir(H)_{2}(PPh_{3})_{2}(acetone)_{2}]^{+} \xrightarrow{Me} Me$$

$$Me$$

$$Me$$

$$Me$$

$$3 \text{ equiv.}$$

$$cyclopentane$$

$$Ph_{3}P$$

$$Ph_{3}P$$

10. Draw the products with relative stereochemistry. (10 points, 2 points each)

Ts
$$\frac{1}{1}$$
 $\frac{1}{1}$ \frac

- 11. Palladium catalyzed reactions that go through Mizoroki-Heck type insertions can give a variety of products based on the conditions. (24 points)
- (a) For the following scheme below give general reaction conditions, specify what X could be, and draw the product for the neutral Heck, cationic Heck, reductive Heck, oxidative Heck, and carbonylative Heck. (4 points each)

(b) Reactions using C(sp³)-halides for the Heck reaction are exceptionally challenging and rare in the literature. Give 1 potential deleterious pathway that would prevent such a reaction from happening selectively. (4 points)

12. Consider the following competition experiment. (7 points)

- (a) Draw the active transmetalating species that leads to formation of product A. (3 points)
- (b) With 1 eq. of K_2CO_3 , **B** is the predominant product. With 2.6 eq. of K_2CO_3 , **A** is the predominant product. Explain why this is the case. (4 points)

(c) (Bonus: ± 3 points) It is necessary to use more than 2 eq. of K₂CO₃ to see the maximum ratio of **A** to **B**. Why is this the case?

- **13**. 10 Points
- (a) Propose a catalytic cycle for the following reaction. (6 points)

(b) When the amide from part (a) is replaced with the substrate below, the reaction does not take place. Explain this result. (4 points)

14. (Bonus: +10 points) Explain the effects of Berry pseudo rotation on the following 3 rhodium species, and the effects on selectivity in hydroformylation.

 $P = 2x PPh_3$, dppe, BISBI

15. (Bonus +5) Draw a potential reaction pathway for the following reaction catalyzed by nonheme iron hydroxylase PoIL.

$$N_3$$
 CO_2H
 CO_2H
 CO_2H
 CO_2H
 CO_2H
 N_1
 N_2
 N_2
 N_1
 N_2

	Francium (223)	Caesium 132.90545196	Rubidium 85.4678	Potassiur 39.0983	Sodium 22.56976925	3 Lithium	Hydrogen	5-
(O)		ý.	38 Strontium	44	_	Beryllium	ī _A 2	
Landbanum usleodar 99 Ac Actinium (220)	89 - 103 Actinoids	-		Scandium 44959908	≣ ₃	15.15		
S8 Cerium House 90 Thorium	₽ 5		8	22 T itanium 47567	IV8			
Frascodymium 140,90766 91 Pa	- 5	7	4	b)				
Neodymium 144242 92 Uranium 23602891				Vanadium Ch 50.94t5	VB 5			
Promethium Promethium Promethium (145) 93 Nephunium (233)		7		Chromium M 51.9961	¥ ₆			
Sm Samarium Samarium 190,36 Putonium (244)		Re 7	chnetium (98)	25 25 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	VIIB			
63 Europium 151.5964 PS Americium (24.5)		0 5	Ruthenium 10107	Fe	¥II8 ®			
u Gd lum Gadolinium 19128 Gunium Curium	3	77	Rhodium	Cobalt 58.533754	VIIIB 9			
64 Gd 7 GS	DS Darmstadtium	78 Pt Platinum 195,084	Pd Palladium	Nickel States	VIIIB			
105 66 66 To 105 105 105 105 105 105 105 105 105 105	∞ ≓		Ag Silver	Copper	≅≡			
Dy Dysprosium 98 98 98 95 (25)	Cn Copernicium	00		Zinc 05.38	IIB			
Holmium MAA3003 199 199 1190 1190 1190 1190 1190 11		. 9		ω	Aluminium 26.9875385	Boron Nasi	13	
B Silver H				a _ %		G Carbon	IVA	
S9 Thulium 101 101 Mendelevis	115 Wium Mose	~ 5	70 Ant	P 33	15 con Phos			
70 Yb Ytterbium 102 102 Nobelium (230)		œ.	51 52 Sb 52 Antimony 14	ψ.	16	Nitrogen (¥35	
71 Lucetium 174.9668 103	_ =	00	Tellurium 53	Selenium E		Oxygen 11	VIA	
·	nnessine	At Astatine	lodine 26.90447	Bromine 79.994	Chlorine	Fluorine	VIIA 22	
	Og Oganesson Oganesson	Rn	Xenon 131,293	Krypton 83.798	Argon Argon	Neon 201797	Helium	S IS