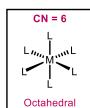
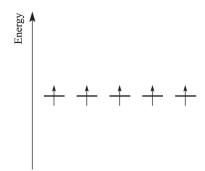
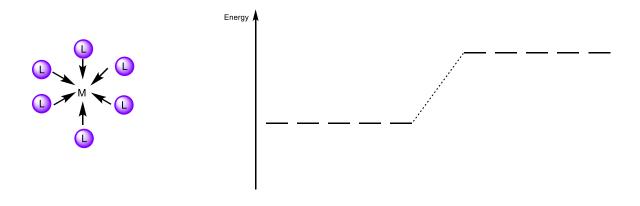
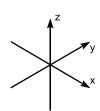

VSEPR Theory: Molecular Geometries


CN	Possible Geometries	Examples
2	Linear	[Au(CN) ₂] ⁻ , [CuCl ₂] ⁻
	Bent	SnCl ₂
3	Trigonal Planar	[Hgl ₃] ⁻ , [AgCl ₃] ²⁻
	Pyramidal	Specialized Systems
	T-Shaped	Specialized Systems
4	Square Planar	RhCl(PPh ₃) ₃
	Tetrahedral	Pd(PPh ₃) ₄ , TiCl ₄
5	Trigonal Bipyramidal	Fe(CO) ₅
	Square Pyramidal	VO(acac) ₂
6	Octahedral	Werner Complexes, Mo(CO) ₆ , [Fe(H ₂ O) ₆] ²⁺



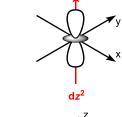
Why we need a new model?

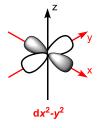

- Coordination compounds: Unexplained Properties
 - Magnetism
 - Absorption Spectra/Colors
- Isolated metal atom
 - The five *d*-orbitals are degenerate

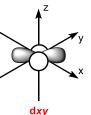

- Hund's rule:
 - In a set of degenerate orbitals, electrons should not be spin-paired until each orbital in the set has one electron.

Crystal Field Theory

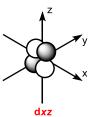
- **Crystal field theory** is an electrostatic bonding model where the donor ligands are thought to impart an *electric field* around the acceptor metal
- The energies of the metal *d*-orbitals are raised due to destabilization from electrostatic repulsion by this electric field (a.k.a. the "**crystal field**")
- If this crystal field were perfectly spherical, all the *d*-orbitals would be destabilized by the same amount
- In crystal field theory, we assume that the ligands behave like *point charges*, meaning that the crystal field is not spherical but depends on the positions of the ligands

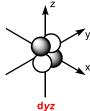

Crystal Field Theory

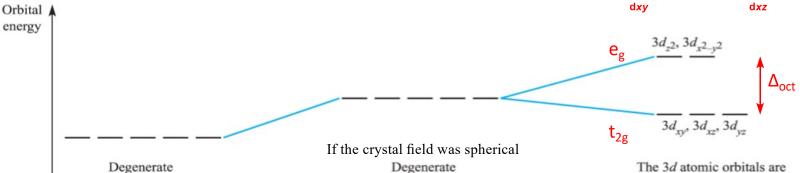


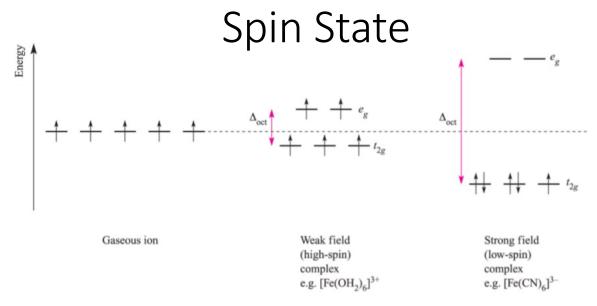

- Metal d-orbitals are destabilized
 - more if they point towards ligands and
 - less if they do not point towards ligands
- The Octahedral Crystal Field

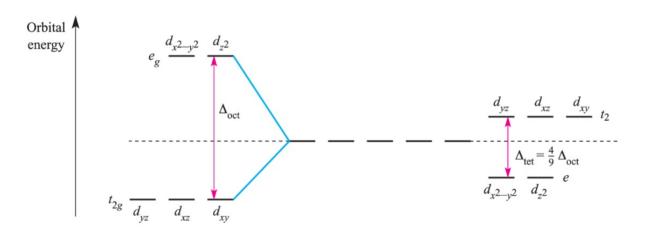
3d atomic orbitals

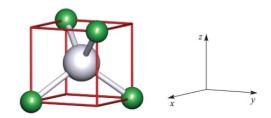

- *d*-orbitals
 - Along the cartesian axes (dz², dx²-y²)
 - In between the cartesian axes (dxy, dxz, dyz)
 - Splitting Energy(Δ_{oct})

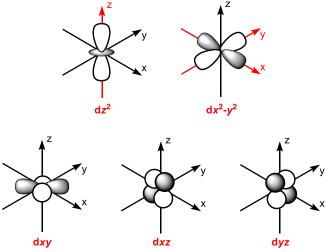





split into two levels

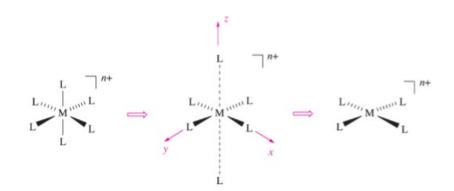

3d atomic orbitals

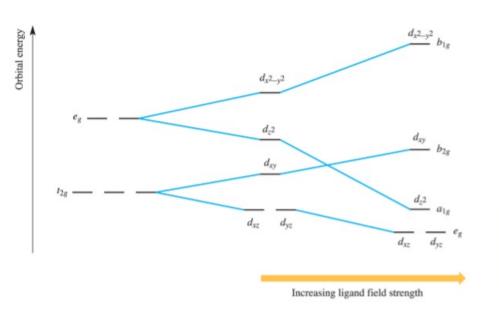


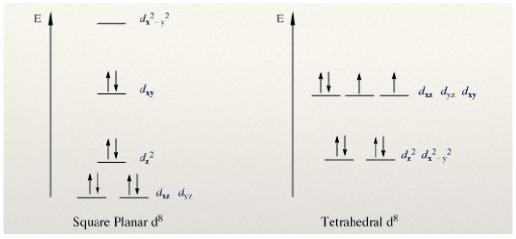

- Energetic penalty for placing two electrons in the same orbital because they repel each other. This is called electron-pairing energy, P.
- In a **weak field** complex, it is energetically favorable to populate the e_g level instead of pairing electrons in t_{2g} . This is because Δ_{oct} is smaller than P.
- In a strong field complex, it is energetically favorable to pair electrons in t_{2g} instead of populating e_g . This is because Δ_{oct} is larger than P.
- For any dⁿ configuration, this gives rise to two possible **spin states**, which are referred to as the **high-spin** and **low-spin** configurations based on number of unpaired electrons.
- Nature of the metal: bigger metals have better orbital overlap, which increases Δ_{oct} (3d < 4d < 5d)
 - 3d metals are often high-spin
 - 4d and 5d metals are almost always low-spin
- Magnetism:
 - Whenever two electrons are paired together in an orbital, or their total spin is 0, they are **diamagnetic** electrons. Atoms with all **diamagnetic** electrons are called **diamagnetic** atoms.
 - A **paramagnetic** electron is an unpaired electron. An atom is considered to be paramagnetic when it contains at least one paramagnetic electron.

Tetrahedral Crystal Field

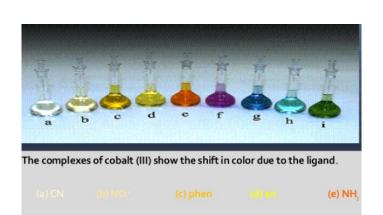
- Splitting inverted from the octahedral
- Crystal field splitting will be smaller






Square planer Crystal Field

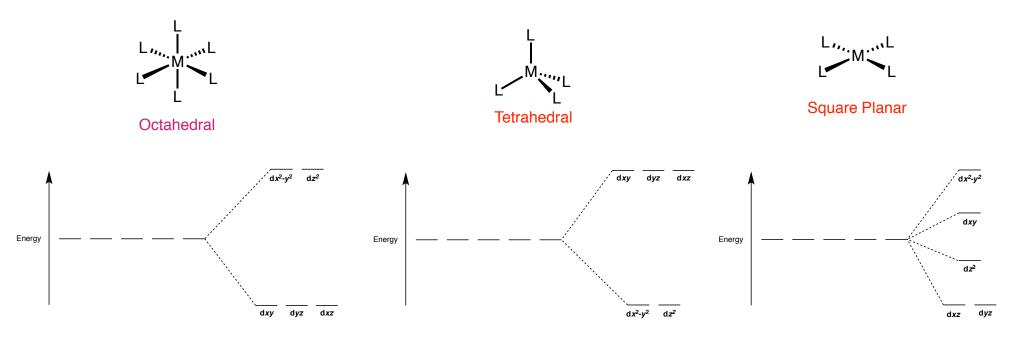
- can be derived from the octahedral crystal field
- Removal of ligands along the z-axis decreases repulsion with the dz² orbital
 - stabilizing it dramatically
- The dx²-y² orbital is especially destabilized
 - all 4 ligands point at it



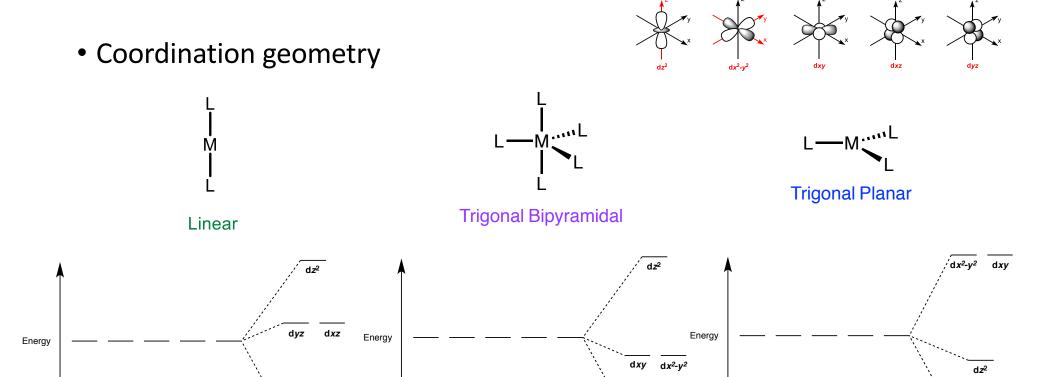
Square planer vs tetrahedral

- Square planar molecules usually have d⁸ configurations
- Tetrahedral d⁸ molecules are **high-spin**
- square planar d⁸ molecules are **low-spin**
- This is because of the large dxy-dx²-y² splitting in the square planar crystal field
- Strong field ligands favor square planar, weak field ligands favor tetrahedral
- Second and third row **metals** (4d and 5d metals) with d⁸ configurations are always square planar (stronger fields), while first row metals (3d metals) can be either

- Magnitude of the crystal field splitting (Δ)
 - Color:
 - Transitions between the $t_{2g}\, \text{and}\,\, e_g$: visible region of the EMR spectrum
 - coordination complexes are often highly colored
 - Spin state
 - Geometry
- Factors affecting the crystal field strength
 - Coordination geometry
 - Metal size & charge
 - Ligand identity



(i) CO.2


(g) H_.O

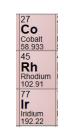
(f) gly

Coordination geometry

d*x*²-*v*²

d*xz*

d*yz*

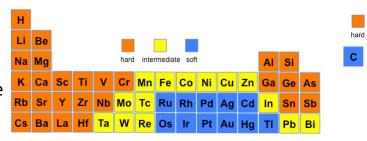

d*yz*

d*xz*

• Δ_{oct} obtained from UV-Vis measurements:

Complex	Δ/cm^{-1}	Complex	Δ/cm^{-1}
$[\mathrm{TiF}_6]^{3-}$	17 000	$[Fe(ox)_3]^{3-}$	14 100
$[Ti(OH_2)_6]^{3+}$	20 300	$[Fe(CN)_6]^{3-}$	35 000
$[V(OH_2)_6]^{3+}$	17850	$[Fe(CN)_6]^{4-}$	33 800
$[V(OH_2)_6]^{2+}$	12 400	$[CoF_{6}]^{3-}$	13 100
$[CrF_6]^{3-}$	15 000	$[Co(NH_3)_6]^{3+}$	22 900
$[Cr(OH_2)_6]^{3+}$	17 400	$[Co(NH_3)_6]^{2+}$	10 200
$[Cr(OH_2)_6]^{2+}$	14 100	$[Co(en)_3]^{3+}$	24 000
$[Cr(NH_3)_6]^{3+}$	21 600	$[Co(OH_2)_6]^{3+}$	18 200
$[Cr(CN)_{6}]^{3-}$	26 600	$[Co(OH_2)_6]^{2+}$	9 300
$[MnF_6]^{2-}$	21 800	$[Ni(OH_2)_6]^{2+}$	8 500
$[\mathrm{Fe}(\mathrm{OH_2})_6]^{3+}$	13 700	$[\mathrm{Ni}(\mathrm{NH_3})_6]^{2+}$	10 800
$[Fe(OH_2)_6]^{2+}$	9 400	$[Ni(en)_3]^{2+}$	11 500

- Metal size & charge
 - Metal spectrochemical series (increasing Δ_{oct}):
 - Mn(II) < Ni(II) < Co(III) < Fe(III) < Cr(III) < Co(III) < Ru(III) < Mo(III) < Rh(III) < Pd(II) < Pt(IV)
- Ligand identity
 - Ligand spectrochemical series (increasing Δ_{oct}):
 - $I^- < Br^- < [\underline{S}CN]^- < CI^- < F^- < [OH]^- < [ox]^2 = H_2O < [\underline{N}CS]^- < NH_3 < en < bpy < phen < [CN]^- = CO$



 π -donors σ -donors π -acceptors

HSAB Classifications

	Ligands (Lewis bases)	Metal centres (Lewis acids)
Hard; class (a)	F ⁻ , Cl ⁻ , H ₂ O, ROH, R ₂ O, [OH] ⁻ , [RO] ⁻ , [RCO ₂] ⁻ , [CO ₃] ²⁻ , [NO ₃] ⁻ , [PO ₄] ³⁻ , [SO ₄] ²⁻ , [ClO ₄] ⁻ , [ox] ²⁻ , NH ₃ , RNH ₂	Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Be ²⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Sn ²⁺ , Mn ²⁺ , Zn ²⁺ , Al ³⁺ , Ga ³⁺ , In ³⁺ , Sc ³⁺ , Cr ³⁺ , Fe ³⁺ , Co ³⁺ , Y ³⁺ , Th ⁴⁺ , Pu ⁴⁺ , Ti ⁴⁺ , Zr ⁴⁺ , [VO] ²⁺ , [VO ₂] ⁺
Soft; class (b)	I ⁻ , H ⁻ , R ⁻ , [CN] ⁻ (<i>C</i> -bound), CO (<i>C</i> -bound), RNC, RSH, R ₂ S, [RS] ⁻ , [SCN] ⁻ (<i>S</i> -bound), R ₃ P, R ₃ As, R ₃ Sb, alkenes, arenes	Zero oxidation state metal centres, Tl ⁺ , Cu ⁺ , Ag ⁺ , Au ⁺ , [Hg ₂] ²⁺ , Hg ²⁺ , Cd ²⁺ , Pd ²⁺ , Pt ²⁺ , Tl ³⁺
Intermediate	Br ⁻ , [N ₃] ⁻ , py, [SCN] ⁻ (<i>N</i> -bound), ArNH ₂ , [NO ₂] ⁻ , [SO ₃] ²⁻	Pb ²⁺ , Fe ²⁺ , Co ²⁺ , Ni ²⁺ , Cu ²⁺ , Os ²⁺ , Ru ³⁺ , Rh ³⁺ , Ir ³⁺

- Hard-soft acid-base principle: Hard acids form more stable complexes with hard bases, while soft acids prefer to bind soft bases.
 - Hard ions:
 - small, densely charged, and non-polarizable.
 - resemble point charges.
 - **Soft** ions:
 - large, diffusely charged, and highly polarizable
 - resemble mushy, smeared electron clouds.

