TODAY'S TOPICS

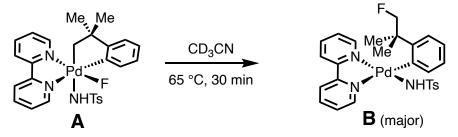
- periodic trends
- HSAB theory
- VSEPR theory
- crystal field theory
- ligand field theory
- metal-ligand bonding

CHEMIST OF THE DAY

name? institution known for?

QUOTE OF THE DAY

research leads to what I call


"Persistence in scientific

instinct for truth."

- Louis Pasteur

PROBLEMS OF THE DAY

#1 Cyclometallated palladium species A rapidly undergoes reductive elimination to give B.

A. For both complexes, provide the (a) coordination number, (b) d-electron count, (c) geometry, (d) metal oxidation state, and (e) total electron count.

B. For both complexes, provide the d-orbital diagrams predicted from CFT.

#2 Predict wheter the following complexes are high or low spin: (a) $[Co(H_2O)_6]^{3+}$, (b) $[Ni(CN)_4]^{2-}$, (c) $[CoF_6]^{3-}$

#3 A. CO is one of the most important ligands in organometallic chemistry. **Draw possible isoelectronic ligands**.

B. Consider the list of ligands from Part A. Predict if their respective σ -donating and π -accepting ability, and design an experiment to test your prediction.

READING

Hartwig: Ch. 1.3–2.2 Crabtree: Ch. 1.5–1.11 **#4** Using the orbital diagrams of O₂ and N₂, **explain why they bond to metals with different geometries** (*i.e.*, which is linear/bent?).