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Definition:
Monooxygenase – only one oxygen atom from O2 is incorporated into the
                              substrate, the other being reduced to H2O
Dioxygenase – both oxygen atoms are incorporated into the substrate(s)
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Spectroscopic techniques to study metalloenzymes

Adapted from Frank Neese's "Vibrational Spectroscopy" lecture;
PSU Bioinorganic Chemistry Workshop 2014
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The P450s
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• Presence of heme (protoporphyrin IX) cofactor
• Axial Cys ligation
• Characteristic Soret peak at 450 nm for ferrous-CO complex

Catalytic cycle of P450 hydroxylation
Chem. Rev.  2004, 104 , 3947

Different domain organizations of P450
Trends Biotechnol. 2012, 30, 26; Biochim. Biophys. Acta 2007, 1770 , 330;
Trends Biochem. Sci. 2013, 38, 140

FADHeme FMN

Reductase

FADHeme FMN

Heme

FeS

FAD

Class I (three-protein system)

Class II (FAD- and FMN-containing reductase)
As separate proteins: Fused (e.g. P450-BM3):

Terminology
FAD domain: flavin adenine dinucleotide binding domain
FMN domain: flavin mononucleotide binding domain

New electron transfer chain mechanisms have recently been discovered
in P450s
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Features:
A. Substrate binding induces spin shift,
    allowing Fe(III) to Fe(II) reduction
B. Cys ligation increases basicity for H abstraction
C. Radical rebound mechanism for hydroxylation

peroxide
shunt

compound II

Compound I basicity: Science 2004, 304, 1653
Compound I characterization: Science 2010, 330, 933
Radical rebound overview: Eur. J. Inorg. Chem. 2004, 207
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Electron transport chain
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Reduced flavin species

Electron transfer cycle in P450BM3
Biochemistry 1996, 35, 7058
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P450-BM3 (CYP102A1)
• Has been extensively studied due to the "fused" nature of the protein
• Native activity: long-chain fatty acid hydroxylase

Examples of site-selective hydroxylation by P450-BM3 variants
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Chem. Soc. Rev.  2012, 41, 1218

P450-BM3

= site of oxidation

Catalytic diversity of P450s
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Nat. Chem. Biol. 2012, 8, 814



Natural and Artificial Metalloenzymes

Fe-αketoglutarate (Fe-αKG) dioxygenase
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Fe-αKG halogenases
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Extensive mechanistic study of this enzyme has been performed by Bollinger-
Krebs group (PSU). Under stoichiometric conditions, they also observed that
SyrB2 can catalyze nitration and azidation:
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swapping out Glu to non-coordinating residue gave non-functional enzyme

A related enzyme, AmbO5 (79% sequence identity), was characterized and
shown to have less-stringent substrate specificity than WelO5. WelO5-AmbO5
fusion showed similar promiscuity but with altered regioselectivities.
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Rational engineering was recently performed on WelO5 based on solved
crystal structure:

Nat. Chem Biol. 2014, 10 , 921
ACIE 2016, 55, 5780

Nat. Chem Biol. 2016, 12 , 636

PLoS ONE  2009, 4, e7635

Nat. Chem Biol. 2014, 10 , 209

PNAS  2005, 102 , 10111

Chem. Rev.  2006, 106 , 3364

Cl
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Rieske Dioxygenases

• First identified in degradation of aromatic compounds by P. putida.
• Identified to be three-component system naphthalene and toluene dioxy-
  genase

OH
OH

O2, NADH,
NDO

• Components: flavin-dependent reductase, ferredoxin, and terminal oxy-
  genase
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J. Bacteriol. 1982, 149 , 948
J. Bacteriol. 1983, 155 , 505

Challenges in studying Rieske oxygenases:
• Multi-component system
• Oxygen-sensitive nature of [2Fe-2S] cluster
• Lack of chromophore for spectroscopic studies (cf. P450)

O2, H+, e-H+, e-

product
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Pyrrolnitrin biosynthesis
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Engineering based on molecular modeling was shown to improve the 
catalytic efficiency of the enzyme (J. Bacteriol. 2006, 188 , 6179)
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kcat/Km (F312A L277V) = 0.243 min-1/µM-1

ACIE 2006, 45, 622

Prodigiosin biosynthesis
ACIE 2003, 42, 3582
JACS 2014, 136 , 4565
Nature Chem. 2011, 3, 388
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Energetic considerations for radical SAM enzyme reduction
• Reduction potential of free SAM ~ –1800 mV
• Reduction potential of [4Fe-4S] ~ –500 to –600 mV
• Radical generation is energetically unfavorable when considered in
  isolation!

Selectivity considerations in C–S bond cleavage
• Spectroscopic studies suggest direct orbital overlap between Fe-S
  cluster and sulfonium S; orbital overlap determines which C–S bond
  is cleaved

Chem. Rev.  2014, 114 , 4229
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Examples of radical SAM in action
Sulfur insertion – biosynthesis of biotin
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  2S] cluster per enzyme monomer
• [4Fe-4S] was retained during turnover, and [2Fe-2S] degraded
• [2Fe-2S] likely the source of sulfur in biotin
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Artificial metalloenzymes (ArMs)
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Some reviews:
Chem. Rev.  2018, 118 , 142
Acc. Chem. Res.  2019, 52, issue 3 (special issue on ArMs)
Curr. Opin. Chem. Biol. 2017, 37, 48
Curr. Opin. Chem. Biol. 2015, 25, 27
Curr. Opin. Chem. Biol.  2014, 19 , 99
Curr. Opin. Chem. Biol. 2010, 14 , 184

Definition:
An ArM is an unnatural enzyme derived from insertion of a catalytically 
competent metal cofactor into a protein scaffold

Current strategies for incorporation:

a: via covalent bond (with residues within the scaffold
b: supramolecular anchoring (exploits high affinity of certain scaffolds for
    particular substrates
c: dative bonding
d: metal substitution

Tetrameric streptavidin with
2 bound biotin molecules

Avidin/streptavidin: tetrameric protein capable of binding biotin with high
affinity (Kd ~ 10–14 M)

First demonstration of ArM catalysis using avidin/biotin technology
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JACS 1978, 100 , 306
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Revisiting of the system in the late 90s...
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Tetrahedron: Asymmetry 1999, 10 , 1887

Chimia 2002, 56, 721

JACS 2003, 125 , 9030
JACS 2004, 126 , 14411
ACIE 2005, 44, 7764
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Adaptation to cross coupling
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Chem. Sci. 2016, 7, 673
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Nature 2016, 537, 661
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Prolyl oligopeptidase scaffold for ArM construction (Lewis)
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• chosen due to its cyclindrical shape
• large internal volume for cofactor anchoring
• cofactor anchoring by strain promoted azide alkyne
  cycloaddition
• Azidophenylalanine residue introduced by amber suppression
• Rh cofactor:
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up to 74% yield,
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Nature Commun. 2015,  6, 7789

Nature Chem. 2018,  10 , 318



Natural and Artificial Metalloenzymes Organometallic
Chemistry

Other protein scaffolds for ArM creation
• LmrR : lactococcal multidrug resistance regulator
• homodimeric protein with a large hydrophobic pore
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Alternative strategy

• Bypasses amber suppression protocol
• Relies on hydrophobic interaction between
  phen and the 2 Trp residues

Miscellaneous strategies
• Anchoring onto serine hydrolase
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Chem. Comm. 2015, 51, 6792

Chem. Comm. 2012, 48, 1662

Chem. Sci. 2015, 6, 770

JACS 2015, 137 , 9796
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Metal substitution strategy for ArM creation (Hartwig)

Scaffold = myoglobin

O
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O OMe

O

Tuning selectivity by mutagenesis

Improvement of kinetics and reaction scope by using different scaffold
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CYP119 69V 213A

254L 152W
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CYP119 = thermostable P450 from S. solfataricus
55% yield, 68% ee

Nature 2016, 534, 534
Science 2016, 354, 102
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P411BM3-CIS: cis:trans = 90:10
                       eecis = 99%

Note: P411BM3 = P450BM3 with Cys to Ser axial substitution

Et

Et

SO2N3

Et

P411BM3-CIS

NH
S

Et

Et Me

O
O

430 TON

S
Me

R4

S
Me

R4

P411BM3-CIS
N

Ts

30–300 turnovers

Ar NH2

N2

+
H2-5-F10

O

R H
N

R

O

Ar26–83% yield
130–354 turnovers

Repurposing hemeproteins for carbene/nitrene transfer
(without metal substitution)

Precedents from organometallic literature

Enantioselective cyclopropanation

Enantioselective amination and sulfimidation

N-H insertion

JACS 1995, 117 , 9194

JACS 1985, 105 , 6728

Science 2013,  339, 307
NCB 2013, 9, 485

Chem. Sci. 2013, 5, 598

ACIE 2013, 52, 9309

JACS 2014, 136 , 8766

For related studies by Fasan:
ACIE 2015, 54, 1744;  Chem. Comm. 2015, 15 , 1532; Chem. Sci. 2015,  6,
2488; ACIE 2016, 55, 16110; JACS 2017, 139 , 5293
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MeO

OMe

MeO

OMe

CO2Et
N2 CO2Et
P411 variant

Ar R

CO2Et

12 examples,
up to 2150 TON,
up to >99% ee

R
R'

CO2Et

5 examples,
up to 3750 TON,

up to 98% ee

R
N
R'

R"

CO2Et

5 examples,
up to 2330 TON,

up to 80% ee

R'
R

TsN3

P411CHA
R'

R

NHTs

17 examples,
up to 730 TON,
up to >99% ee

N
H

O
OPiv

NH

O

HN

O

N
H

O

P411 var 1

P411 var 2

P411 var 3

14:1 rr, 94% ee

4:1 rr, 94% ee

12:1 rr, 94% ee

alternative
nitrene

precursor

Enantioselective C-H insertion Enantioselective intermolecular C-H amination

Regioselective intramolecular C-H amination

Nature 2019, 565, 67

Nature Chem. 2017, 9, 629

Science 2019, 364, 575


