

TODAY'S TOPICS

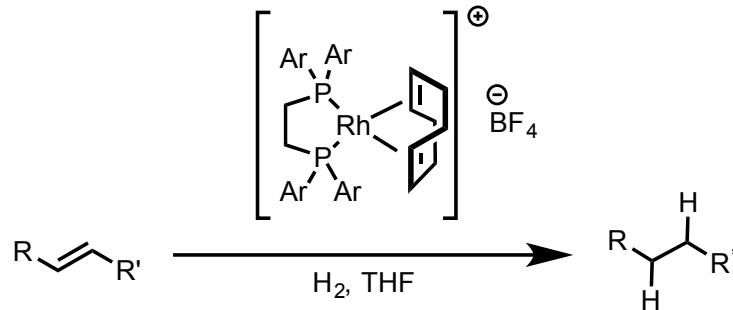
- General information
- Key historical developments
- Mechanisms
- Asymmetric catalysis

CHEMIST OF THE DAY

name?
known for?

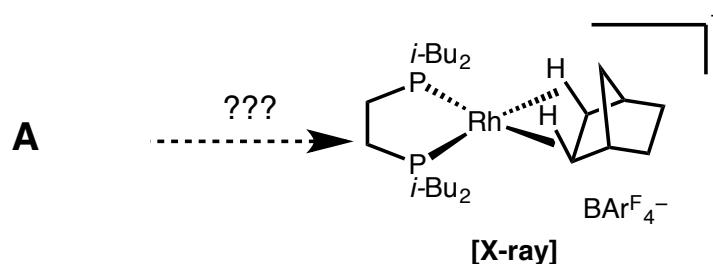
QUOTE OF THE DAY

"Great things are not accomplished by those who yield to trends and fads and popular opinion."


- Jack Kerouac

READING

Hartwig: Ch. 15
Crabtree: Ch. 9.2–9.3


PROBLEMS OF THE DAY

#1 The Schrock–Osborn catalyst shown below is highly active for the hydrogenation of olefins. **Propose the active (on-cycle) catalyst in the transformation.**

#2 Consider the following σ -complex reported by Macgregor and Weller (*Science* **2012**, *337*, 1648).

A. Provide the oxidation state, d-electron count and overall electron count for the complex.

B. Propose a plausible synthetic route to access this complex.

C. Provide the structure of BArF_4^- (original report: *Bull. Chem. Soc. Jpn.* **1984, *57*, 2600).**

#3

Wilkinson's catalyst, $(\text{Ph}_3\text{P})_3\text{RhCl}$, effects the hydrogenation of terminal and internal olefins. In contrast the complex $(\text{Ph}_3\text{P})_3\text{Rh}(\text{CO})\text{H}$ is highly selective for hydrogenating terminal olefins exclusively. This complex can also promote alkene isomerization to convert terminal alkenes to internal alkenes. (*J. Chem. Soc. A* **1968**, 2665). **Explain these trends.**