

The Chemistry of Colorants

Dyes & Pigments

28 June 2018

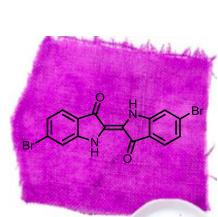
The Chemistry of Colorants

Dyes & Pigments

28 June 2018

- 1. (Brief) History of colorants
- 2. Classifications
- 3. Physical chemistry
- 4. Types of dyes and pigments
- 5. Eight modern research examples
- 6. Why you might care/current industry

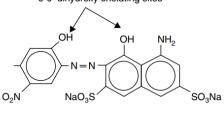
History of dyes and pigments


• Dyes have been derived from plants, animals, and minerals

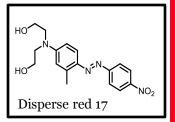
• <u>Indigoid dye</u> represents the arguably oldest natural dye

• From plant Indigofera tinctoria

•Used in India for ~4000 years


- Woad was another source of blue in Europe
 - From Isatis tinctoria
 - •Used in Bronze Age Europe (2500-800 BC)
- Tyrian purple produced the royal color
 - •From shell fish Purpura and Murex
 - Made in Tyre and Sidon since 800 BC
 - Produced an awful smell
 - •Only source of purple for thousands of years

History of dyes and pigments


- NaO₃S
 NaO₃
- •Many natural dyes have a low chemical affinity to textiles
 - It was a multistep process to prepare fibers:
 - 1. A mordant (metal salt) is used to impregnate the fibers
 - Metal ion complexes with functional groups
 - Often Al, Fe, Sn, Cr, Cu
 - Commonly used were potash alum $[KAl(SO_4)_2 \cdot 12H_2O]$ and iron sulfate $[FeSO_4 \cdot 7H_2O]$ and $(SnCl_2)$
 - Treatment of fabric occurred often in metal vats or with iron nails present
 - 2. The dye was introduced to coordinate with the metal-impregnated fabric

CI Mordant Green 17, C.I. 17225 (Colour Index, 1987)

Mordanting Chromium salt H_2O H_2O OH_2 OH_3 OH_2 OH_3 OH_3 OH_4 OH_4 OH_4 OH_5 OH_5 OH_5 OH_6 OH_6 OH_7 OH_8 OH_8 OH_9 $OH_$

Moving away from natural sources

- First two synthetic pigments developed:
 - 1. White lead, basic lead carbonate [2PbCO₃·Pb(OH)₂]
 - Described first by Theophrastus of Eresos (~300 BC)
 - Created by combining lead and acetic acid in the presence of CO₂
 - 2.Blue Frit, Egyption Blue [CaCuSi₄O₁₀]
 - First evidenced in Egypt (~3000 BC)
 - Created by heating together quartz sand, copper, calcium carbonate, and alkali from ash up to 800-1,000 °C

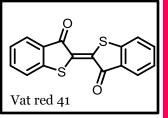
$$Cu_2CO_3(OH)_2 + 8 SiO_2 + 2 CaCO_3 \rightarrow 2 CaCuSi_4O_{10} + 3 CO_2 + H_2O_{10}$$

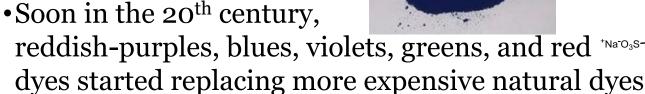
Moving into Modernity

NaO₂S HN Reactive red
120

- Prussian Blue
 - First truly modern synthetic pigment arising as a result of a deliberately conducted chemical reactions
 - •Produced by Diesbach in Berlin in 1704 trying to produce a lake pigment (metal coordinated natural pigment)
 - •Created originally by mixing potash, iron sulfate, and *blood*

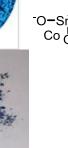
Cyanide in Greek means "dark blue"

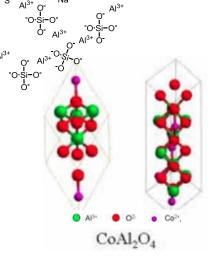


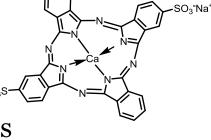


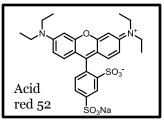
Moving into Modernity

•By the early 19th century, synthetic blue colorants existed:



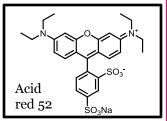

- French ultramarine
 - •Synthesized-1826
 - \cdot Al₆Na₈O₂₄S₃Si₆
- Cobalt blue
 - Synthesized-1802 (Thenard)
 - •CoAl₂O₄
- Cerulean blue
 - Discovered 1789 (Hopfner)
 - $\cdot CoO_3Sn$
- Phthalo blue (CuPc)
 - •Discovered 1927





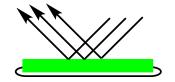
Dyes and Pigments

Dyes

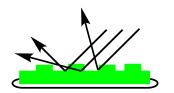


Broadbent AD (2001) Basic principles of textile coloration. Society of Dyers and Colourists, West Yorkshire, England

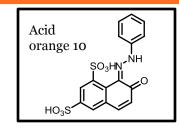
Dyes and Pigments

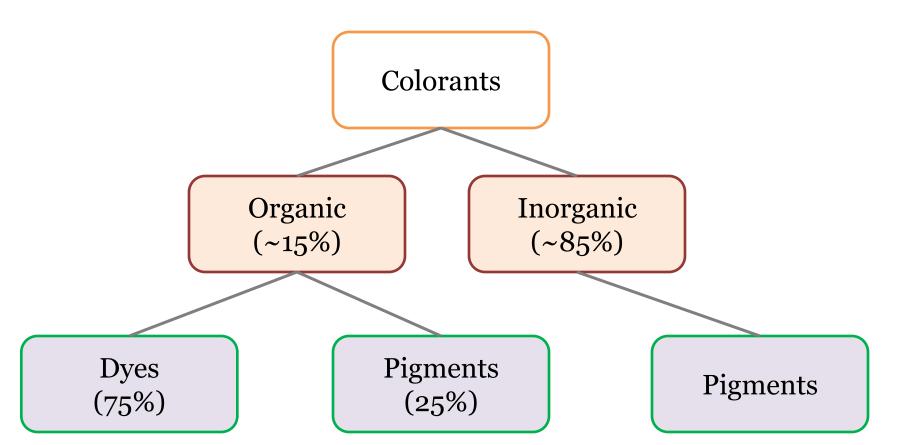

<u>Dyes</u>

Dyes are required to solvate during the application process; they often also have some affinity for the material being colored.


Pigments

Pigments are specific colorants composed of particles insoluble in the application medium; they are colored, colorless, or fluorescent and can be organic or inorganic, finely divided solids


Selectively absorb light due to specific chemical nature of dye



Selectively absorb and/or scatter light due to pigment & material

Dyes and Pigments

Chakraborty JN (2010) Colouring materials. In: Chakraborty JN (ed) Fundamentals and practices in colouration of textiles New Delhi. Woodhead Publishing, India

Basic orange 21

• Industrial value of dyes depends on wavelength and intensity of the absorption band as a function of dye concentration

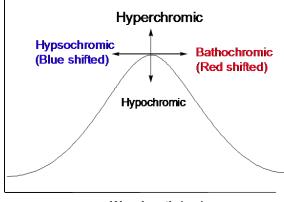
Intensity of incoming light

$$Lambert-Beer \text{ law} \qquad A = \log_{10} \frac{I}{I} = \epsilon l c$$

Concentration

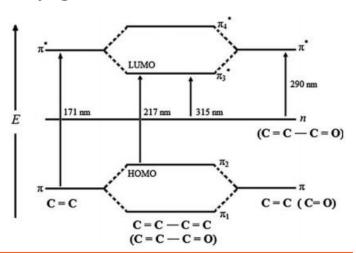
Absorbance

Intensity of transmitted light

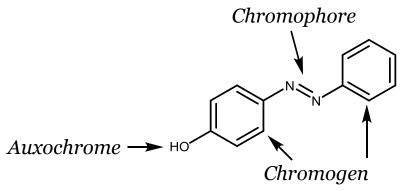

Path length

Concentration

Molar extinction coefficient

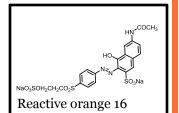

Technically important dyes display extinction coefficients

in excess of 10⁴-10⁵ M⁻¹ cm⁻¹

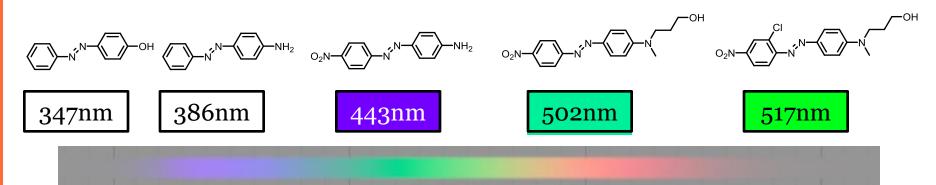


Wavelength (nm)

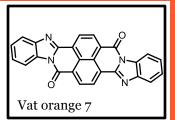
- •Chromophores absorb light within the UV or visible range
 - Examples: C=C, C≡C, C=O, C≡N, N=N, NO₂
- Different transitions can occur with chromophores
 - $\pi \to \pi^*$, $n \to \pi^*$ and $n \to \sigma^*$
- •Auxochromes are covalently saturated groups that change the wavelength or intensity of the absorption maximum
 - Examples: NH₂, OH, SH, halogens
 - Tend to increase wavelngth and intensity through conjugation resonance
- •Conjugated chromophores tend to increase wavelength and intensity
 - Create an additional set of HOMO/LUMO pairs and increase conjugation area
 - Energy difference between HOMO & LUMO is lowered leading to a bathochromic shift



- Disperse orange 3
- •Chromogens are chemical compounds that are colored or could be made colored by the attachment of a suitable substituent (increases the conjugated system size)
- •Solvent yellow 7 (4-Hydroxyazobenzene) as an example:



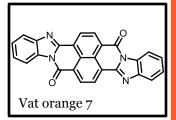
- Colorants possess several important traits
 - Absorbs light in the visible spectrum (400-700 nm)
 - Have at least one chromophore
 - Have a conjugated system
 - Exhibit resonance of electroms


- •General rules for adjusting color:
 - Adding electron-donating groups gives a bathochromic effect
 - Electron-donating and electron-accepting groups in conjugation provide an intense bathochromic effect
 - Increasing the number of electron-attracting groups conjugated with electrondonor groups has a bathochromic effect
 - The electron donating group are enhanced by adding alkyl groups to the N-atom

Asiri AM (2001) Organometallic dyes: Part 1. Synthesis of orange to cyan dyes based on donor-conjugated-acceptor-chromogenes using ferrocene as the donor group. Appl Organomet Chem 15:907–915

380 390 **400** 410 420 430 440 450 460 470 480 490 **500** 510 520 530 540 550 560 570 580 590 **600** 610 620 630 640 650 660 670 680 690 **700** 710 720

Common Classes of Colorants


• Dyes:

- Acid Dyes
- Anthraquinone Dyes
- Azo Dyes
- Basic Dyes
- Direct Dyes
- Disperse Dyes
- Indigoid Dyes
- Nitro and Nitroso Dyes
- Phthalocyanine Dyes
- Reactive Dyes
- Sulfur Dyes
- Vat Dyes

• Pigments:

- Inorganic Pigments
- Organic Pigments

Common Classes of Colorants

• Dyes:

- Acid Dyes
- Anthraquinone Dyes
- Azo Dyes
- Basic Dyes
- Direct Dyes
- Disperse Dyes
- Indigoid Dyes
- Nitro and Nitroso Dyes
- Phthalocyanine Dyes
- Reactive Dyes
- Sulfur Dyes
- Vat Dyes

• Pigments:

- Inorganic Pigments
- Organic Pigments

Acid Dyes

NaO₃S Acid yellow 36

- •Generally comprised of organic sulfonic acids
- •Commercially available as sodium salts; excellent water solubility
- •Contains azo, anthraquinone, triphenylmethane, nitro, and nitroso chromophoric groups
- •Used to dye many types of fiber:
 - Cotton
 - Polyester
 - Rayon
 - Wool
 - Silk

Acid red 88

Acid orange 7

Anthraquinone Dyes

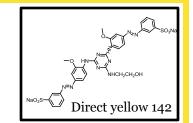
Basic yellow 40

Based around an anthraquinone central structure

- •Some of the oldest types of dyes (found >4000 years ago)
- Good brightness and fastness
- •Most synthetic substitution occurs at the α -position with sulfonation or nitration

•For β -substituted dyes, synthesis usually starts from phthalic anhydride or benzene derivatives

OH OH

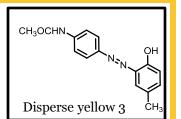

Disperse red 60

SO₃-HN SSO₀-

Reactive blue 19

Gregory P (1990) Classification of dyes by chemical structure. In: Waring DR, Hallas G (eds) The chemistry and application of dyes. Plenum Press, New York, USA

Azo Dyes


•Most common and most widely used; >60% of the dyes

- •Often contain two aromatic groups in A & B, but must have at least one
- Exist in the trans form
- "A" often contains electron-accepting substituents while "B" contains electron-donating substituents

Shah M (2014) Effective treatment systems for azo dye degradation: a joint venture between physico-chemical & microbiological process. Int J Environ Bioremediat Biodegradation 2 (5):231–242

Gregory P (1990) Classification of dyes by chemical structure. In: Waring DR, Hallas G (eds) The chemistry and application of dyes. Plenum Press, New York, USA

Basic Dyes

- •Also called cationic dyes due to the presence of a positive charge, often caused by an ammonium cation
- •Being water soluble, they were originally used for paper, silk and wool
- Generally low color fastness
 - Forms covalent bonds with acrylic fibers negating this issue

Basic red 1

Basic green 1

<u>Direct Dyes</u>

Reactive yellow 145

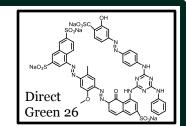
- Water-soluble and easily applied to cellulose
 - Anionic; forms bonds with cellulosic fibers
 - No mordant required
 - Applied from aqueous mixture containing an electrolyte
- Generally have high molecular masses
 - Promotes dye aggregation
 - Promotes substantively to the fiber
- Also called substantive dye

Direct blue 1

$$\begin{array}{c} Na^{+} \\ Na^{+} \\ O_{3}S \end{array}$$

Hunger K (2003) Industrial dyes: chemistry, properties, applications. Wiley-VCH, Weinheim Considine DM (1995) Van Nostrand's scientific encyclopedia. Springer, New York, USA Broadbent AD (2001) Basic principles of textile coloration. Society of Dyers and Colourists, England

<u>Disperse Dyes</u>


Vat yellow 33

- •Often contain azo, anthraquinone, and nitro groups
- Water-insoluble dyes with affinity for hydrophobic fibers
 - Nylon
 - Cellulose
 - Acrylic

Disperse yellow 26

Disperse red 9

Indigoid Dyes

•All based on the organic compound—indigo

- •Obtained from natural sources for ~5000 years until the 19th century
- One of the first natural molecules synthesized
- Pflegers's method is used to create most of the high quality indigo

Głowacki ED, Voss G, Leonat L, Irimia-Vladu M, Bauer S, Sarıçiftçi NS (2012) Indigo and tyrian purple—from ancient natural dyes to modern organic semiconductors. Isr J Chem 52:1–12

Ünlü M (2008) Indigo dyeing wastewater treatment by the membrane based filtration process, Master Thesis, Middle East Technical University, Ankara, Turkey

Nitro and Nitroso Dyes

NaO₃S Na NaO₃S Na NaO₃S Na NaO₃S Na NaO₃S Na NaO₃S Na Reactive green 10

- •Minor commercial importance
- •Of interest for their small molecular structure
- •Used in acid form to dye natural fibers such as silk or wool

Disperse yellow 1

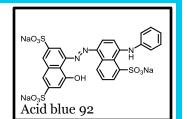
Picric Acid

$$O_2N$$
 NO_2
 NO_2

Acid yellow 24

Phthalocyanine Dyes

- •A class of macrocyclic compounds possessing a highly conjugated electron system with intense near-IR absorption
- Vat green 3


- •They have a number of unique properties:
 - Increased stability
 - Diverse coordination properties
 - Architectural flexibility
- •Often intense color in 650-750 nm range

Direct Blue 86

•Coordinates with metals such as Cu, Fe, Si, Ge, As

Durmuş M, Nyokong T (2008) Photophysicochemical and fluorescence quenching studies of benzyloxyphenoxy-substituted zinc phthalocyanines. Spectrochim Acta A 69(4):1170–1177; Wöhrle D, Schnurpfeil G, Makarov SG, Kazarin A, Suvorova ON (2012) Practical applications of phthalocyanines—from dyes and pigments to materials for optical, electronic and photoelectronic devices. Macroheterocycles 5(3):191–202; Hunger K (2003) Industrial dyes: chemistry, properties, applications. Wiley-VCH, Weinheim; Sahin S, Altun S, Altundal A, Odabas Z (2015) Synthesis of novel azo-bridged phthalocyanines and their toluene vapour sensing properties. Sens Actuat B-Chem 206:601–608

Reactive Dyes

• Differ from other dyes because their molecules react to form covalent bonds with functional groups on the fibers

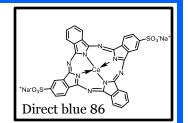
- Have exceptional qualities:
 - High wet-fastness
 - Brilliant
 - Large range of hues

•Usually contain –NH–, –CO–, or –SO₂– as linking group

Reactive Red 198

Sulfur Dyes

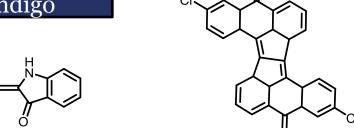
H₃CO CH₃OSO₃.


Basic blue 41

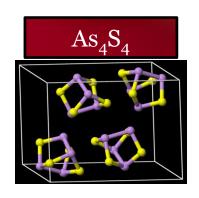
- •Almost always used for dyeing cellulosic fibers
- •Insoluble in water
 - Reduced to the water-soluble leuco (white/reduced) form
 - Applied using sodium sulfide solution
 - Dye formed via oxidation while impregnated in the fiber

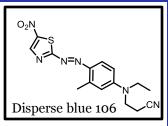
•Often they don't have well defined structures or compositions due to oligermerization & di/poly-sulfide links

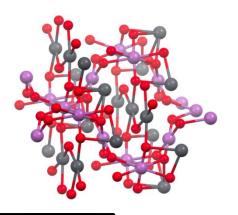
Sulfur Black 1

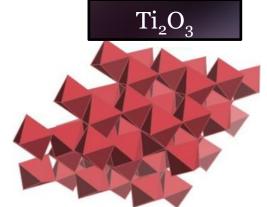

Vat Dyes

- Water-insoluble pigments
 - Called dyes because in alkaline solution, reduction occurs forming a watersoluble leuco form
- Held to cellulose via van der Waals forces and hydrogen bonding
- •Oxidizes on drying to become water-insoluble again leading to high color fastness


 Lack of industry knowledge and basics for application techniques have led to a decrease of usage Vat brown 45


Vat yellow 4


Inorganic Pigments


- Broken into four categories:
 - 1. White
 - 2. Black
 - 3. Colored
 - 4. Miscellaneous
 - Metal effect
 - Flakes/lamella-shaped particles of soft, ductile metals
 - Avoid issues of organic molecules hindering cold welding
 - Nacreous
 - Pearlescence due to multiple partial reflections
 - Fish-scales (guanine)
 - Transparent
 - Used in protection as a lacquer
 - Blocks UV light with small particles
 - Luminescent
 - Solid fine particulates
 - Reemit absorbed energy as light
 - Rely on fluorescence or phosphorescence

 $Pb_2Sb_2O_7$

Organic Pigments

Reactive blue NaO₃S
19
OHN
SO₃Na

- Based on carbon chains and carbon rings
 - Can have metallic elements for stabilization
 - Must be insoluble at the time of application
 - Have a smaller average particle size than inorganic pigments
- Broken down into six main categories:
 - 1. Azo
 - 2. Triaryl carbonium
 - 3. Anthraquinone
 - 4. Dioxazine
 - 5. Polyclic
 - 6. Quinophthalone

$$\xrightarrow{R^{-N}} \xrightarrow{R^{-N} \setminus R} \xrightarrow{A^{-}}$$

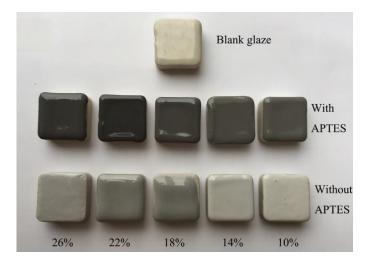
$$CI \longrightarrow CI$$

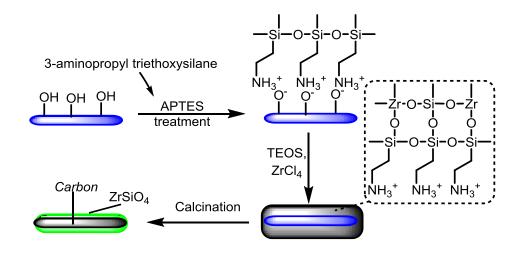
$$CI \longrightarrow CI$$

$$CI \longrightarrow CI$$

Pigment violet 23

YInMn Blue


- Vat blue 4
- •Discovered accidentally by Andrew Smith and Prof. Mas Subramanian at Oregon State University in 2009
 - Looking for multiferroics
 - Instead formed, at 2,000 °F upon mixing of YInO $_3$ and YMnO $_3$, a bright blue compound
- Prof. Subramanian recognized the potential use as a pigment
 - Had worked for DuPont Co.
 - Filed patent disclosure covering the pigment
- Notable features
 - Extremely vibrant, near-perfect blue
 - Extremely stable; does not fade (as does ultramarine/ Prussian blue)
 - Non-toxic (as is cobalt blue)
 - Strong infrared radiation reflection (useful for energy-saving cool coatings)
- Crayola created the "Bluetiful" crayon, replacing Dandelion (2017)
- •Being released as an acrylic paint by Matisse
- •Can adjust color by changing ratios; YIn_{0.8}Mn_{0.2}O₃-optimal



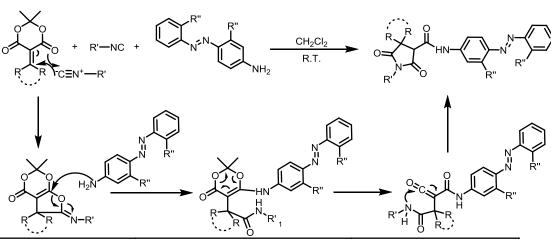
Smith, Andrew E.; Mizoguchi, Hiroshi; Delaney, Kris; Spaldin, Nicola A.; Sleight, Arthur W.; Subramanian, M. A. (2009-12-02). "Mn3+ in Trigonal Bipyramidal Coordination: A New Blue Chromophore". *Journal of the American Chemical Society*. **131** (47): 17084–17086. doi:10.1021/ja9080666 Smith, Andrew E.; Comstock, Matthew C.; Subramanian, M. A. (2016-10-01). "Spectral properties of the UV absorbing and near-IR reflecting blue pigment, YIn1-xMnxO3". *Dyes and Pigments*. **133**: 214–221. doi:10.1016/j.dyepig.2016.05.029

C@ZrSiO₄

- Published 2016 by Weihui Jiang at Jingdezhen Ceramic Inst.
- •A zircon-based black pigment consisting of in-situ polycondensation
- •After enameling on tiles at 1200 °C, C@ZrSiO₄ pigment appeared a promising candidant for high temp. ceramics
 - Smooth, clean, deep hue
 - High tinting ability
 - Absence of any surfactants

- 30m in air at 1200 °C
- No cracks or holes seen
- Inclusion of pigment has good thermal and chemical stability in the glaze at high temp.

T. Chen, et al., Synthesis and application of C@ZrSiO4 inclusion ceramic pigment from cotton cellulose as a colorant, J Eur Ceram Soc (2016), http://dx.doi.org/10.1016/j.jeurceramsoc.2015.07.021

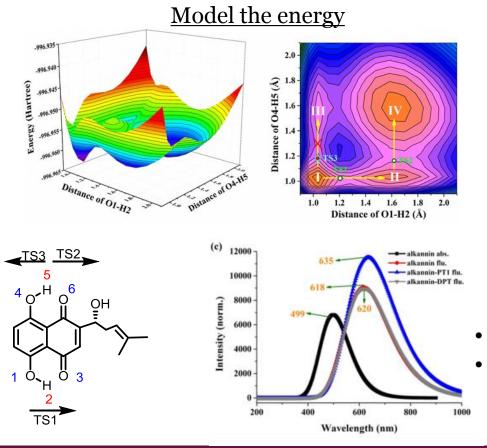

Synthetic Development of Succinimide Dyes

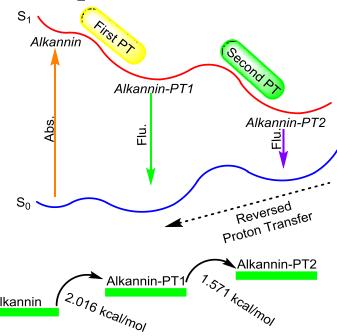
O HN Br NH O Br Tyrian purple

- Published 2014 by Yousef Valizadeh
- Developed a one-pot reaction of *Meldrum's acid*, alkyl isocyanide, and 4-(2-phenyldiazenyl)benzenamine

$$A = \log_{10} \frac{I_o}{I} = \varepsilon l c$$

$$\frac{I_o}{I} = \varepsilon l c$$




$\lambda_{\max}(nm)$	348	346.7	344	344
\boldsymbol{A}	1.66	0.4	1.35	1.32
ε	30,180	40,000	26,470	24,900

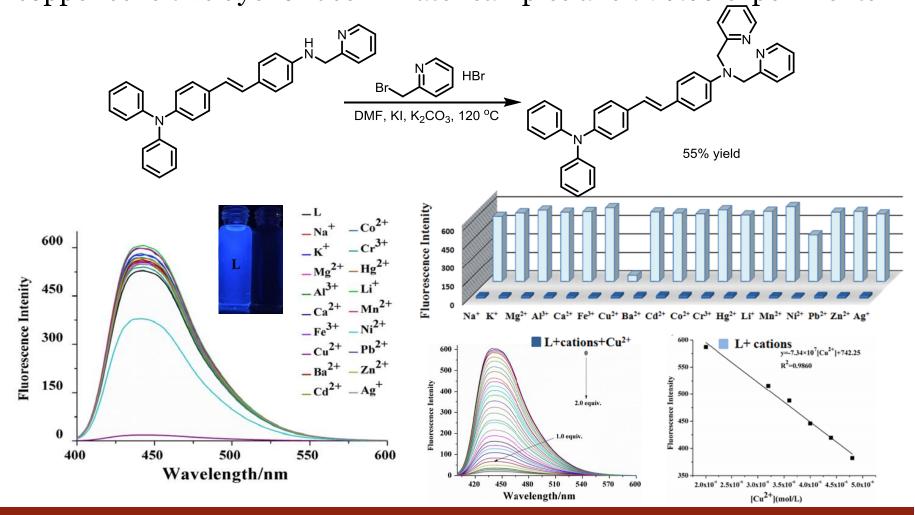
Theoretical/Computational Studies

•Yujun Zheng's group at Shandong University study the most important component of modern deep red pigments—alkannin

•The group explores the mechanism of the double proton transfer

• Confirm importance TS1

• Suggest the stepwise excited state double proton transfer


Alkannin

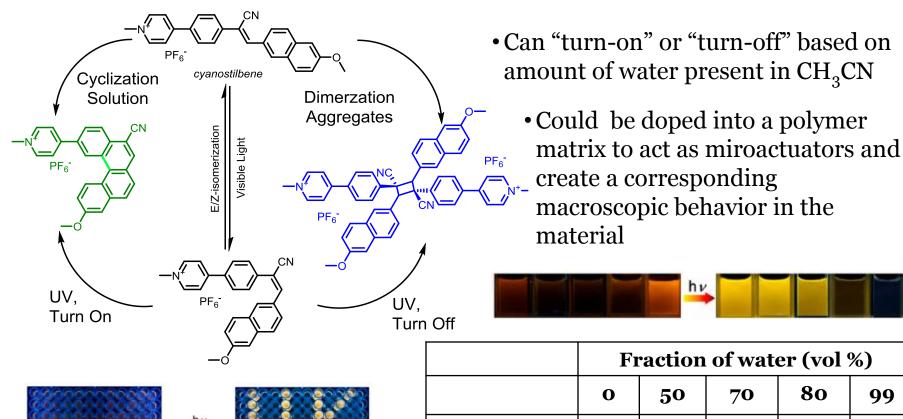
Quin

635nm

Development of a New Chelating Dye

• Hongping Zhou in Anhui University in 2018 developed a copper sensitive dye for use in water samples and *in vivo* experiments

Huihui Zhang, Zeyue Wei, Ying Xia, Min Fang, Weiju Zhu, Xingyuan Yang, Fei Li, Yupeng Tian, Xuanjun Zhang, Hongping Zhou, Exploration research on synthesis and application of a new dye containing di-2-picolyamine. Saa(2017), https://doi.org/10.1016/j.saa.2018.02.023


Photochromic Colorants

 $\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

99%

<1%

•Ben Zhong Tang at HKUST-Shenzhen Research Institute published in 2018 a multiphotochrome molecule

Peifa Wei, Jing-Xuan Zhang, Zheng Zhao, Yuncong Chen, Xuewen He, Ming Chen, Junyi Gong, Herman H.-Y. Sung, Ian D. Williams, Jacky W. Y. Lam, and Ben Zhong Tang *J. Am. Chem. Soc.* 2018, 140, 1966–1975

Dimerized

Cyclized

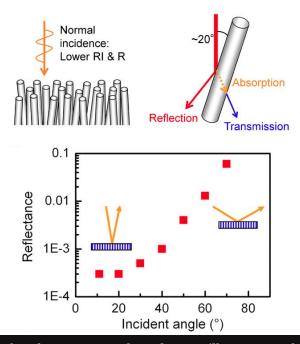
<1%

99%

<4%

96%

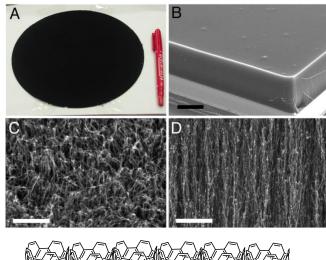
<4%


96%

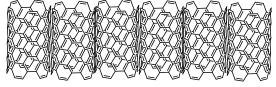
90%

<10%

Vertically Aligned Nanotube Arrays


- •Original development by Lehman in the UK for use in thermal detection applications in the infrared
- Spectrally flat over most visible wavelengths
 - Absorbs 99.965% of visible light
 - Vertical nanotubes are grown using chemical vapor deposition
 - Light doesn't reflect out, but gets trapped in the tubes until absorption

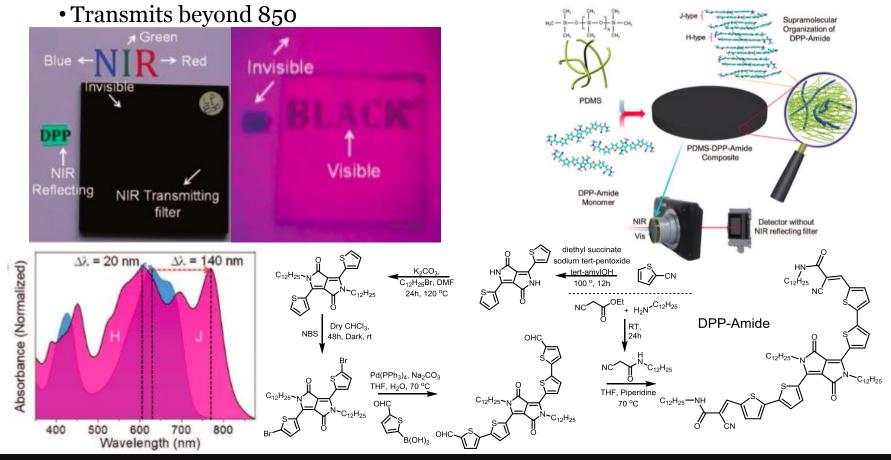
Anish Kapoor Art



Reactive

black 5

Theocharous, E.; Deshpande, R.; Dillon, A. C.; Lehman, J. "Evaluation of a pyroelectric detector with a carbon multiwalled nanotube black coating in the infrared". Applied Optics. 45 (6): 1093. doi:10.1364/AO.45.001093
"Vantablack, the world's darkest material, is unveiled by UK". South China Morning Post - World. 15 July 2014.


Kohei Mizuno, Juntaro Ishii, Hideo Kishida, Yuhei Hayamizu, Satoshi Yasuda, Don N. Futaba, Motoo Yumura, and Kenji Hata PNAS April 14, 2009. 106 (15) 6044-6047; https://doi.org/10.1073/pnas.0900155106

Near-Infrared-Transmitting Optical Filter

DPP-amide

- Developed by Ayyappanpillai in 2017
- Visibly opaque but NIR-transparent materials are important for security systems and night-vision technology

• DPP-Amide blocks 300-800 nm light by H-bonding and π -stacking

S. Ghosh, Dr. S. Cherumukkil, Dr. C. H. Suresh, Prof. A. Ajayaghosh Adv. Mater. 2017, 29, 1703783

Industrial Opportunities

TiO₂

- •Typical Education Requirement
 - Ph.D. required for most research positions
 - Postdoctoral work required for most academic positions
 - Synthetic chemistry
 - Analytical chemistry
 - Organic chemistry
 - Polymer chemistry
 - Material chemistry
- Laboratories
 - Academic
 - Industrial
 - Government
- •Salaries (2015)
 - Lab managers: \$76,000 median
 - Pigment chemists: \$65,400 median
 - Ink chemists: \$60,200 median
 - (note: B.S. chemists earn \$50 to \$80K)

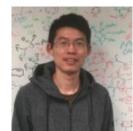
- Future Employment Trend
 - Steady growth in paints & varnishes
 - Accounts for 43% of pigment and 27% of plastic colorant demand
 - Niche markets expected to grow
 - Photochromic colorants
 - Medical dyes
 - Infrared dyes for security
 - Hair dyes
 - High-tech applications up-and-coming
 - Inkjet microfabrication
 - 3D printing

Industrial Opportunities

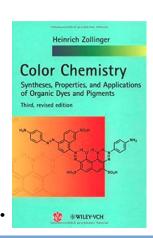
ZnO

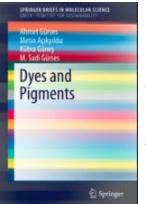
- •Typical work
 - Develop applications for existing dyes and pigments
 - Examine health, environmental, and safety concerns of colorants
 - Design, create, and characterize novel products and formulations
 - · Analyze historical artifacts and artwork for pigments and dyes used
 - Work in crime scene analytics determining dyes and pigments in evidence
 - Teach courses and train students

Professional Organizations

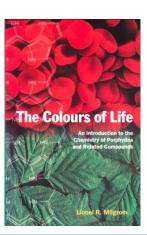


Thank Your for Your Attention!





Great resources


A. Gürses, M.
Açıkyıldız, K.
Güneş, M. S.
Gürses, Dyes and
Pigments,
Springer
International
Publishing, 2016.

H. Zollinger, Color Chemistry: Syntheses, Properties, and Applications of Organic Dyes and Pigments, VCH, **1991.**

L. R. Milgrom, The Colours of Life, Oxford University Press, **1997.**

